Visibility of synaptically induced conductance changes: theory and simulations of anatomically characterized cortical pyramidal cells.

نویسندگان

  • C Koch
  • R Douglas
  • U Wehmeier
چکیده

A recent report has provided evidence that there are no significant increases in the neuronal input conductance during the response of cortical cells in cat visual cortex to non-preferred visual stimuli (Douglas et al., 1988). A criticism of experiments of this kind is that changes in the membrane conductance occurring in the dendritic tree may not be visible from electrodes that impale the soma. Our paper describes theoretical and numerical results concerning the visibility of synaptically induced conductance changes from intracellular electrodes, in both ideal and anatomically well-characterized cortical neurons. Based on earlier work by Rall (1967), we here derive theoretical expressions for the change in input conductance at any location in a passive dendritic tree resulting from activation of a single synapse and obtain bounds for the effects of multiple synapses. We find that the conductance change measured at the cell body is always less than the sum of the synaptic conductance changes and that this observed conductance change does not depend on the synaptic reversal potential. For the case of an infinite dendritic cylinder, the change in input resistance due to a single synaptic input decays exponentially with distance of the synapse from the recording site. Numerical simulations of synaptic inputs that change approximately as fast as the membrane time-constant produce an increase in input conductance that is only slightly less visible than that of a constant input. We also compute the changes in somatic input conductance of 2 morphologically identified pyramidal cells from cat visual cortex during activity of a single inhibitory basket cell with known synaptic input locations. We find that the increase in conductance due to the activity of the inhibitory basket cells is clearly visible from the cell body of the pyramidal cells and that a 70% reduction in the amplitude of excitation is associated with at least a 30% increase in somatic input conductance, which would be visible in intracellular recordings. Taken together with the negative experimental evidence of Douglas et al. (1988), our results cast doubt on a large class of models of direction selectivity that rely on synaptically mediated inhibitory conductance increases to veto or block excitatory conductances increases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Dendritic properties of turtle pyramidal neurons.

The six-layered mammalian neocortex evolved from the three-layered paleocortex, which is retained in present-day reptiles such as the turtle. Thus the turtle offers an opportunity to examine which cellular and circuit properties are fundamental to cortical function. We characterized the dendritic properties of pyramidal neurons in different cortical regions of mature turtles, Pseudemys scripta ...

متن کامل

Effect of Coenzyme Q10 (ubiquinone) on hippocampal CA1 pyramidal cells following transient global ischemia/reperfusion in male wistar rat

Ischemia/Reperfusion (I/R)-induced cerebral injury has been reported as a leading cause of deathand long-term disabilities. Hippocampus is an area which is more sensitive to be affected by I/Rand hypoxic conditions. Coenzyme Q10 is a strong antioxidant which plays a role in membranestabilization. This study aims to investigate the possible role of CoQ10 in ameliorating thehistomorphological cha...

متن کامل

Use of Colchicine in Cortical Area 1 of the Hippocampus Impairs Transmission of Non-Motivational Information by the Pyramidal Cells

Colchicine, a potent neurotoxin derived from plants, has been recently introduced as a degenerative toxin of small pyramidal cells in the cortical area 1 of the hippocampus (CA1). In this study, the effect of the alkaloid in CA1 on the behaviors in the conditioning task was measured. Injections of colchicine (1,5 μg/rat, intra-CA1) was performed in the male Wistar rats, while the animals were s...

متن کامل

Modeling direction selectivity of simple cells in striate visual cortex within the framework of the canonical microcircuit.

Nearly all models of direction selectivity (DS) in visual cortex are based on feedforward connection schemes, where geniculate input provides all excitatory synaptic input to both pyramidal and inhibitory neurons. Feedforward inhibition then suppresses feedforward excitation for nonoptimal stimuli. Anatomically, however, the majority of asymmetric, excitatory, synaptic contacts onto cortical ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 10 6  شماره 

صفحات  -

تاریخ انتشار 1990